[Trisquel-security] [USN-1164-1] Linux kernel vulnerabilities (i.MX51)
Marc Deslauriers
marc.deslauriers at canonical.com
Wed Jul 6 16:36:13 CEST 2011
==========================================================================
Ubuntu Security Notice USN-1164-1
July 06, 2011
linux-fsl-imx51 vulnerabilities
==========================================================================
A security issue affects these releases of Ubuntu and its derivatives:
- Ubuntu 10.04 LTS
Summary:
Multiple kernel flaws have been fixed.
Software Description:
- linux-fsl-imx51: Linux kernel for IMX51
Details:
Thomas Pollet discovered that the RDS network protocol did not check
certain iovec buffers. A local attacker could exploit this to crash the
system or possibly execute arbitrary code as the root user. (CVE-2010-3865)
Dan Rosenberg discovered that the CAN protocol on 64bit systems did not
correctly calculate the size of certain buffers. A local attacker could
exploit this to crash the system or possibly execute arbitrary code as the
root user. (CVE-2010-3874)
Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did
not correctly clear kernel memory. A local attacker could exploit this to
read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875)
Vasiliy Kulikov discovered that the Linux kernel sockets implementation did
not properly initialize certain structures. A local attacker could exploit
this to read kernel stack memory, leading to a loss of privacy.
(CVE-2010-3876)
Vasiliy Kulikov discovered that the TIPC interface did not correctly
initialize certain structures. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-3877)
Nelson Elhage discovered that the Linux kernel IPv4 implementation did not
properly audit certain bytecodes in netlink messages. A local attacker
could exploit this to cause the kernel to hang, leading to a denial of
service. (CVE-2010-3880)
Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver
did not correctly clear kernel memory. A local attacker could exploit this
to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080,
CVE-2010-4081)
Dan Rosenberg discovered that the VIA video driver did not correctly clear
kernel memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2010-4082)
Dan Rosenberg discovered that the semctl syscall did not correctly clear
kernel memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2010-4083)
James Bottomley discovered that the ICP vortex storage array controller
driver did not validate certain sizes. A local attacker on a 64bit system
could exploit this to crash the kernel, leading to a denial of service.
(CVE-2010-4157)
Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If
a system was using X.25, a remote attacker could exploit this to crash the
system, leading to a denial of service. (CVE-2010-4164)
It was discovered that multithreaded exec did not handle CPU timers
correctly. A local attacker could exploit this to crash the system, leading
to a denial of service. (CVE-2010-4248)
Nelson Elhage discovered that the kernel did not correctly handle process
cleanup after triggering a recoverable kernel bug. If a local attacker were
able to trigger certain kinds of kernel bugs, they could create a specially
crafted process to gain root privileges. (CVE-2010-4258)
Nelson Elhage discovered that Econet did not correctly handle AUN packets
over UDP. A local attacker could send specially crafted traffic to crash
the system, leading to a denial of service. (CVE-2010-4342)
Tavis Ormandy discovered that the install_special_mapping function could
bypass the mmap_min_addr restriction. A local attacker could exploit this
to mmap 4096 bytes below the mmap_min_addr area, possibly improving the
chances of performing NULL pointer dereference attacks. (CVE-2010-4346)
Dan Rosenberg discovered that the OSS subsystem did not handle name
termination correctly. A local attacker could exploit this crash the system
or gain root privileges. (CVE-2010-4527)
Dan Rosenberg discovered that IRDA did not correctly check the size of
buffers. On non-x86 systems, a local attacker could exploit this to read
kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)
Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses
into the /proc filesystem. A local attacker could use this to increase the
chances of a successful memory corruption exploit. (CVE-2010-4565)
Kees Cook discovered that some ethtool functions did not correctly clear
heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit
this to read portions of kernel heap memory, leading to a loss of privacy.
(CVE-2010-4655)
Kees Cook discovered that the IOWarrior USB device driver did not correctly
check certain size fields. A local attacker with physical access could plug
in a specially crafted USB device to crash the system or potentially gain
root privileges. (CVE-2010-4656)
Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly
clear memory when writing certain file holes. A local attacker could
exploit this to read uninitialized data from the disk, leading to a loss of
privacy. (CVE-2011-0463)
Dan Carpenter discovered that the TTPCI DVB driver did not check certain
values during an ioctl. If the dvb-ttpci module was loaded, a local
attacker could exploit this to crash the system, leading to a denial of
service, or possibly gain root privileges. (CVE-2011-0521)
Jens Kuehnel discovered that the InfiniBand driver contained a race
condition. On systems using InfiniBand, a local attacker could send
specially crafted requests to crash the system, leading to a denial of
service. (CVE-2011-0695)
Dan Rosenberg discovered that XFS did not correctly initialize memory. A
local attacker could make crafted ioctl calls to leak portions of kernel
stack memory, leading to a loss of privacy. (CVE-2011-0711)
Rafael Dominguez Vega discovered that the caiaq Native Instruments USB
driver did not correctly validate string lengths. A local attacker with
physical access could plug in a specially crafted USB device to crash the
system or potentially gain root privileges. (CVE-2011-0712)
Timo Warns discovered that the LDM disk partition handling code did not
correctly handle certain values. By inserting a specially crafted disk
device, a local attacker could exploit this to gain root privileges.
(CVE-2011-1017)
Julien Tinnes discovered that the kernel did not correctly validate the
signal structure from tkill(). A local attacker could exploit this to send
signals to arbitrary threads, possibly bypassing expected restrictions.
(CVE-2011-1182)
Dan Rosenberg discovered that MPT devices did not correctly validate
certain values in ioctl calls. If these drivers were loaded, a local
attacker could exploit this to read arbitrary kernel memory, leading to a
loss of privacy. (CVE-2011-1494, CVE-2011-1495)
Tavis Ormandy discovered that the pidmap function did not correctly handle
large requests. A local attacker could exploit this to crash the system,
leading to a denial of service. (CVE-2011-1593)
Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl
values. A local attacker with access to the video subsystem could exploit
this to crash the system, leading to a denial of service, or possibly gain
root privileges. (CVE-2011-1745, CVE-2011-2022)
Vasiliy Kulikov discovered that the AGP driver did not check the size of
certain memory allocations. A local attacker with access to the video
subsystem could exploit this to run the system out of memory, leading to a
denial of service. (CVE-2011-1746, CVE-2011-1747)
Oliver Hartkopp and Dave Jones discovered that the CAN network driver did
not correctly validate certain socket structures. If this driver was
loaded, a local attacker could crash the system, leading to a denial of
service. (CVE-2011-1748)
Update instructions:
The problem can be corrected by updating your system to the following
package versions:
Ubuntu 10.04 LTS:
linux-image-2.6.31-609-imx51 2.6.31-609.26
After a standard system update you need to reboot your computer to make
all the necessary changes.
ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed. If
you use linux-restricted-modules, you have to update that package as
well to get modules which work with the new kernel version. Unless you
manually uninstalled the standard kernel metapackages (e.g. linux-generic,
linux-server, linux-powerpc), a standard system upgrade will automatically
perform this as well.
References:
http://www.ubuntu.com/usn/usn-1164-1
CVE-2010-3865, CVE-2010-3874, CVE-2010-3875, CVE-2010-3876,
CVE-2010-3877, CVE-2010-3880, CVE-2010-4080, CVE-2010-4081,
CVE-2010-4082, CVE-2010-4083, CVE-2010-4157, CVE-2010-4164,
CVE-2010-4248, CVE-2010-4258, CVE-2010-4342, CVE-2010-4346,
CVE-2010-4527, CVE-2010-4529, CVE-2010-4565, CVE-2010-4655,
CVE-2010-4656, CVE-2011-0463, CVE-2011-0521, CVE-2011-0695,
CVE-2011-0711, CVE-2011-0712, CVE-2011-1017, CVE-2011-1182,
CVE-2011-1494, CVE-2011-1495, CVE-2011-1593, CVE-2011-1745,
CVE-2011-1746, CVE-2011-1747, CVE-2011-1748, CVE-2011-2022
Package Information:
https://launchpad.net/ubuntu/+source/linux-fsl-imx51/2.6.31-609.26
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 836 bytes
Desc: This is a digitally signed message part
URL: <http://listas.trisquel.info/pipermail/trisquel-security/attachments/20110706/f09bd48b/attachment.pgp>
-------------- next part --------------
--
ubuntu-security-announce mailing list
ubuntu-security-announce at lists.ubuntu.com
Modify settings or unsubscribe at: https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce
More information about the Trisquel-security
mailing list